TfYlBSWoGpzoGUM6Tpr8Gfz6BA==
Light Dark
Penurunan Identitas Trigonometri (Pythagorean Identities)

Penurunan Identitas Trigonometri (Pythagorean Identities)

Berikut Kami Jabarkan Penurunan Rumus Identitas Trigonometri, Semoga Bermanfaat
Daftar Isi
×
Diberikan sebuah segitiga siku-siku sebagai berikut :


Berdasarkan Fungsi Trigonometri pada Segitiga Siku-siku, maka :


Dari Fungsi Trigonometri di atas dan berdasarkan Teorema Pythagoras, maka didapat :

$ a^2 + b^2 = c^2 $

$ \dfrac{a^2}{c^2} + \dfrac{b^2}{c^2} = \dfrac{c^2}{c^2} $

$ \left( \dfrac{a}{c} \right)^2 + \left( \dfrac{b}{c} \right)^2 = 1 $

$ (\sin \theta)^2 + (\cos \theta)^2 = 1 $

$ \mathbf{\sin^2 \theta + \cos^2 \theta = 1} $

$ a^2 + b^2 = c^2 $

$ \dfrac{a^2}{b^2} + \dfrac{b^2}{b^2} = \dfrac{c^2}{b^2} $

$ \left( \dfrac{a}{b} \right)^2 + 1 = \left( \dfrac{c}{b} \right)^2 $

$ (\tan \theta)^2 + 1 = (\sec \theta)^2 $

$ \tan^2 \theta + 1 = \sec^2 \theta $

 $ a^2 + b^2 = c^2 $

$ \dfrac{a^2}{a^2} + \dfrac{b^2}{a^2} = \dfrac{c^2}{a^2} $

$ 1 + \left( \dfrac{b}{a} \right)^2 \left( \dfrac{c}{a} \right)^2 $

$ 1 + (\cot \theta)^2 = (\csc \theta)^2 $

$ 1 + \cot^2 \theta = \csc^2 \theta $


Cara Lain : 

$ \sin^2 \theta + \cos^2 \theta = 1 $

$ \dfrac{\sin^2 \theta}{\cos^2 \theta} + \dfrac{\cos^2 \theta}{\cos^2 \theta} = \dfrac{1}{\cos^2 \theta} $

$ \left( \dfrac{\sin \theta}{\cos \theta} \right)^2 + 1 = \left( \dfrac{1}{\cos \theta} \right)^2 $

$ (\tan \theta)^2 + 1 = (\sec \theta)^2 $

$ \tan^2 \theta + 1 = \sec^2 \theta $



Cara Lain :

$ \sin^2 \theta + \cos^2 \theta = 1 $

$ \dfrac{\sin^2 \theta}{\sin^2 \theta} + \dfrac{\cos^2 \theta}{\sin^2 \theta} = \dfrac{1}{\sin^2 \theta} $

$ 1 + \left( \dfrac{\cos \theta}{\sin \theta} \right)^2 = \left( \dfrac{1}{\sin \theta} \right)^2 $

$ 1 + (\cot \theta)^2 = (\csc \theta)^2 $

$ 1 + \cot^2 \theta = \csc^2 \theta $


Referensi : Mathalino

0Komentar

Special Ads
Special Ads
Special Ads