Berdasarkan Fungsi Trigonometri pada Segitiga Siku-siku, maka :
Dari Fungsi Trigonometri di atas dan berdasarkan Teorema Pythagoras, maka didapat :
$ a^2 + b^2 = c^2 $
$ \dfrac{a^2}{c^2} + \dfrac{b^2}{c^2} = \dfrac{c^2}{c^2} $
$ \left( \dfrac{a}{c} \right)^2 + \left( \dfrac{b}{c} \right)^2 = 1 $
$ (\sin \theta)^2 + (\cos \theta)^2 = 1 $
$ \mathbf{\sin^2 \theta + \cos^2 \theta = 1} $
$ a^2 + b^2 = c^2 $
$ \dfrac{a^2}{b^2} + \dfrac{b^2}{b^2} = \dfrac{c^2}{b^2} $
$ \left( \dfrac{a}{b} \right)^2 + 1 = \left( \dfrac{c}{b} \right)^2 $
$ (\tan \theta)^2 + 1 = (\sec \theta)^2 $
$ \tan^2 \theta + 1 = \sec^2 \theta $
$ a^2 + b^2 = c^2 $
$ \dfrac{a^2}{a^2} + \dfrac{b^2}{a^2} = \dfrac{c^2}{a^2} $
$ 1 + \left( \dfrac{b}{a} \right)^2 \left( \dfrac{c}{a} \right)^2 $
$ 1 + (\cot \theta)^2 = (\csc \theta)^2 $
$ 1 + \cot^2 \theta = \csc^2 \theta $
Cara Lain :
$ \sin^2 \theta + \cos^2 \theta = 1 $
$ \dfrac{\sin^2 \theta}{\cos^2 \theta} + \dfrac{\cos^2 \theta}{\cos^2 \theta} = \dfrac{1}{\cos^2 \theta} $
$ \left( \dfrac{\sin \theta}{\cos \theta} \right)^2 + 1 = \left( \dfrac{1}{\cos \theta} \right)^2 $
$ (\tan \theta)^2 + 1 = (\sec \theta)^2 $
$ \tan^2 \theta + 1 = \sec^2 \theta $
Cara Lain :
$ \sin^2 \theta + \cos^2 \theta = 1 $
$ \dfrac{\sin^2 \theta}{\sin^2 \theta} + \dfrac{\cos^2 \theta}{\sin^2 \theta} = \dfrac{1}{\sin^2 \theta} $
$ 1 + \left( \dfrac{\cos \theta}{\sin \theta} \right)^2 = \left( \dfrac{1}{\sin \theta} \right)^2 $
$ 1 + (\cot \theta)^2 = (\csc \theta)^2 $
$ 1 + \cot^2 \theta = \csc^2 \theta $
0Komentar
Insert code: <i rel="code">Put code here</i> or <i rel="pre">Put code here</i>
Insert image: <i rel="image">Put Url/Link here</i>
Insert title: <b rel="h3">Your title.</b>
Insert blockquote: <b rel="quote">Put text here</b>
Bold font: <b>Put text here</b>
Italics: <i>Put text here</i>